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1 Introduction

The Domain Name System (DNS) [7] provides vital mapping services for the Internet. It maps domain
names such as ucla.edu to values ranging from IP addresses to email servers to geographic locations and
more. Virtually every Internet application relies on looking up some form of DNS data. This article first
describes a dichotomy that exists between DNS’ well structured and ordered data plane (the hierarchical
tree of domain names) and its, as yet underappreciated, control plane (the interconnected graph of name
servers). Then the article focuses on the control structure’s dependency graphs, which are the recursive
graphs of the inter-dependencies that exist between the name servers associated with each zone. The goal
of this investigation is to understand the implications these graphs have on the security and performance of
the overall DNS itself.

DNS’ data plane is a name space that is a clearly defined tree hierarchy whose intent is to ensure DNS
domain name uniqueness. At the top of the tree, the root zone delegates authority to Top Level Domains
(TLDs) like .com, .net, .org, and .edu. The zone .com then delegates authority to create google.com;
.edu delegates authority to create ucla.edu, and so forth. In the resulting DNS tree structure, each node
corresponds to a zone. Each zone belongs to a single administrative authority and is served by multiple
authoritative name servers, which provide name resolution services for all the names in the zone. One reason
that the DNS is so powerful is that its data plane allows administrators a great deal of flexibility: they can
manage their name space however they like. However, the control plane’s analogous flexibility can lead to
operational problems if not managed conscientiously.

For DNS’ control plane, operational guidelines require that a zone have multiple authoritative name
servers, and that they be distributed through diverse topological and geographical locations to make DNS
services robust against unexpected failures [5]. Zone operators face decisions, such as where to place the
multiple servers in order to meet these guidelines. While the goal and implications of the diversified redun-
dancy guideline may seem clear at the first glance, a more detailed look suggests the existence of different
types of redundancy.

• Server instance redundancy: providing multiple server instances can share the load and provide ro-
bustness against host failures. However if all the instances are placed in one location, they are still
subject to local failures such as flooding or power outages.

• Topological redundancy: placing DNS server instances in distinct topological locations (different net-
works/prefixes/ASNs/etc) can help to greatly reduce the impact of local failures. However this topo-
logical diversity is likely to introduce administrative diversity as well, i.e. placing one zone’s server in
different administrative domains. Given the importance of DNS service, hosting one’s DNS server in
another administrative domain silently implies a high level of trust on the hosting domain, an important
issue that deserves attention.

• Domain name redundancy: placing DNS servers under different branches of the DNS tree (e.g. using
ns.bar.com as a secondary server for the domain foo.com) can provide redundancy across different
organizations, so that failure of one organization will not impact the availability of its DNS service.
This is a common practice today, as DNS operators host each others secondary servers. However this
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Figure 1: Here we can see that the TLDs .com and .net fall directly below the root, and foo.com and
bar.net fall directly below their lexical parents.

again can silently lead to unknown transitive DNS resolutions needed to resolve a single name, as we
explain later in this article, the resulting impact on security and performance can be significant.

The dependency graph that results from DNS operators hosting each other’s secondary servers (both
topologically, and by domain name) leads to two operational questions: i) is the transitive trust that a zone
operator places in his/her remotely hosted secondaries transitive enough that resolvers should implicitly be
able to trust these organizations too, and ii) as the dependency graph grows larger and more work is forced
onto resolvers, is the increased redundancy ultimately more hurtful than helpful?

In the remainder of this article we provide observations that show the existence of dependency graphs,
a new tool for visualizing them for any zone, we qualify their usefulness to operators, and we outline the
magnitude of the performance impact they can have on resolvers. The goal of this article is to raise awareness
of the tradeoffs that exists between redundancy and usability of zones with large dependency graphs.

2 Background

The DNS was designed to be (and remains as) the Internet’s de facto name mapping system. Thus, among its
primary objectives are providing both name uniqueness and a distributed authority model. That is, the data
plane in the DNS (its domain names) like iab.org, cs.ucla.edu, and verisignlabs.com must all map to
unique (and potentially different) administrative organizations, servers, locations, etc. All arbitration about
which organizations are allowed to own which domain names are external to the operational system. For
example, all accredited colleges in the United States can acquire a name space (or zone) below the .edu
TLD. However, they must all be designated uniquely. Therefore, csu.edu cannot be used by Colorado State
University, because it is delegated to Chicago State University. Figure 1 shows a very simple illustration of
the data plane.

While the DNS name space maintains order and administrative separation through its strict tree hierarchy,
the different zones are actually served by its control plane; an uncorrelated graph of name servers. For
example, the zone iab.org exists under the .org TLD, which is under the root, and is totally unambiguous.
However, the name servers for iab.org exist under both .org and .info. In fact, the TLD .bg’s name
servers exist under .bg, .se, .com, and .net. Thus, while the name space is logically hierarchical, its control
structure can be quite complex. Figure 2 shows an example of how the simple zone hierarchy can be served
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Figure 2: Here we can see that even though the zones follow a clean hierarchy, foo.com is served by name
servers under the bar.net zone, and even some of the name servers that serve its own parent, .com. There is
no restriction on the control structure of the DNS name servers (like there is over the logical data structure
of its name space).

by an interconnection of name servers. Moreover, previous work [8] has even demonstrated that the name
server interconnections can lead to cyclic dependencies. Whenever a client resolver wants to traverse any
zone in the data plane it must first learn the names and IP addresses of the name servers that serve that
zone. Thus, as zone operators place the name servers for their zones under more branches of the DNS, they
force resolvers to spend a corresponding amount of extra effort querying other zones. Resolvers must learn
the mapping of each related zone’s name server IP addresses, and the mappings for any name servers that
serve those zones, and so on (we call this the Dependency Graph).

3 Transitive Trust

The term “transitive trust” underscores an implicit tension between one way that zone operators attempt to
bolster the redundancy of their deployed zones, and the resultant transitivity that resolvers are saddled with.
The crux of the tradeoff is simple: zone operators may want to use trust in their colleagues and diversity
of names to bolster their deployments, but resolvers (who have no control over how data is served) may
not trust their transactions to the same parties. Some of the benefits to the zone operators are i) they can
bolster their name server deployments by trusting friends (who are already deployed in different topological
locations), and ii) placing name servers in different branches of the DNS hierarchy increases the diversity of
the name space that zones rely on (and thus reduces correlated failures). That is, if a zone (say foo.com)
has name servers under .net, .com, and .info, then any failure of a single TLD will still allow resolvers to
locate and query foo.com’s zone. However, resolvers may be trusting a zone with sensitive information (such
as banking transactions) and may not trust any step of their transactions to the servers a zone operator has
enlisted.

Another view of adding diverse names to the list of authoritative sources for a zone is that they are new li-
abilities. Indeed, while adding independent branches and lexically diverse name servers reduces concerns that
a zone may have a single point of failure, it also increases the number of points of partial failure, and requires
quantifiably more work under normal operations. In order to illustrate this, consider the following example,
imagine a zone foo.com that is served by the name servers ns.foo.com and the secondary ns.bar.net. In
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Figure 3: The dependency graph of the IAB has a large number of zones (15) and, thus, requires more work
to resolve, and presents a larger attack surface.

order for a resolver to query foo.com, it must first lookup the zone for ns.bar.net (bar.net). Further, if
bar.net has a secondary in the zone baz.com, and that zone has a secondary in qux.com, then the operator
of foo.com has directed resolvers to transit a form of their trust in the zone’s authorities all the way to
qux.com. We call the full set of interconnections the Dependency Graph.

3.1 The Dependency Graph

Earlier work [9] described the Transitive Trust process in some detail. However, one important operational
clarification to this earlier work is that while resolvers do trust qux.com for part of the resolution process
of foo.com (in the above example), they do not directly query qux.com for any authoritative information
about foo.com. Thus, an adversary cannot inspect queries to qux.com and thereby know if they are even
related to foo.com. Therefore, what needs to be clarified is that one cannot assume that compromising
any name server in a dependency graph will necessarily enable an attack against any other portion of that
graph. Nevertheless, this view of transitive trust does present a liability to foo.com. For example, if an
adversary were determined enough, and perhaps had some out of band information, she could interpose in
early communications and spoof the entire resolution chain between qux.com and foo.com, or perhaps she
may even control qux.com. Here we simply observe that adding dependencies across wider areas of the DNS
name space increases the attack surface over which an adversary may try to launch an attack.

While the above is just a simple fictional example, we can use VeriSign Labs’ Transitive Trust Portal [6]
to consider the actual dependency graphs of several real zones. First, in Figure 3, we consider the zone of the
Internet Architecture Board (IAB) [1], which is an organization that provides leadership to the IETF [2] for
Internet standards and operational best practices. Here we can see that this relatively important zone has
a rather large dependency graph, and the resulting attack surface includes name servers outside the IAB’s
direct administrative control. Perhaps more alarming is the graph for the TLD .bg, seen in Figure 4. By
contrast, consider the relatively smaller surface of Starbucks’ zone, in Figure 5.
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Figure 4: The dependency graph of .bg has a very large number of zones (42) and, thus, requires a great
deal of work to resolve, and presents a significant attack surface.

Figure 5: The dependency graph of Starbucks is only 5 zones and is about as large as that of its TLD (.com)
and the root (which could be considered to be requirements for any zone under a TLD), and thus presents
relatively little resolution work, and a relatively small attack surface.

3.2 Security Concerns

The term “attack surface” describes the relative number of places that an adversary can attack something
(in this case, a DNS zone). As a general rule of thumb, operators should try to reduce their attack surface by
reducing any points of vulnerability (i.e. limiting any would-be adversary’s targets of opportunity). Not all
points on an attack surface need to have known glaring holes in order to be of concern to an operator. Rather,
the existence of an external dependency can, itself, be enough for an adversary to find a weakness that an
operator is unaware of. For example, consider the previous example of foo.com’s dependency on qux.com.
While an operator may not think that an adversary can know which of the queries that are seen by qux.com
relate to foo.com, that doesn’t mean that the adversary cannot know. Thus, a security conscious operator
faces an implicit challenge to guard their zone against threats that result from attacks against his/her
infrastructure and the external infrastructure the zone relies on. In addition to the increased surface, the
operational overhead of traversing these graphs can be an important factor in every day operations when
there is no failure or attack underway.

3.3 Overhead Concerns

While including multiple branches of the DNS hierarchy bolsters a zone’s independence from failures, oper-
ators must also consider that the amount of work needed to resolve names in multiple branches is on the
same order as the relative independence. That is, if one has put secondary servers in different branches of
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the DNS, then the entire predecessor graph for each secondary must also be looked up. This is because when
many modern resolvers (BIND, unbound, Secure64, etc.) encounter a zone, they lookup all name servers,
with varying degrees of parallelism. This allows them to use various proprietary algorithms to select the
most efficient responder to queries (lowest latency, fewest dropped packets, etc.).

While increasing the overhead that resolvers face may not be considered a “problem” by many, it does
have a measurable impact on performance. The aforementioned resolvers must all issue separate queries for
each name server in a zone, and as the dependency graph grows larger, the number of concurrent queries
(and therefore, the amount of work done by a resolver) has been observed to result in larger lags in resolution
time. In essence, resolvers pay a measurable price every day for these deployment choices even if a failure
never capitalizes on their existence.

Perhaps one of the most daunting problems of large dependency graphs is simply a lack of awareness.
With zones like .com that have hundreds of servers at multiple geographic locations and an official up-time
of 100%, most zones gain no measurable resilience by placing name servers under additional TLDs. In the
event of a TLD failure, this may help their up-time, but every resolver is constantly faced with the increased
lag and load time every time it encounters such a zone. Many Best Common Practices (BCPs) exist for
manging DNS deployments [5, 3, 4], but no document currently describes the liabilities and tradeoffs of
dependency graphs in the DNS.

4 Conclusion

Given the importance of DNS services in Internet operations, it is our responsibility as Internet researchers
to gain a thorough understanding of the system’s security and performance qualities. In this article we use
specific instances of DNS dependency graphs to highlight an important aspect of the existing DNS system
that has yet to be fully understood, documented, and dealt with.

As the evidence in this article shows, excessively large dependency graphs exist, and they can lead to
both underappreciated trust considerations and notable performance penalties. We would like to call the
community’s attention to these issues in order to put them on the table, so that necessary operational guide-
lines can be developed. Further, there is a balancing act between the complexity, overhead, and resilience of
DNS’ control plane, and finding an operational sweet spot is an important open research challenge.
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